

Computer

Effects
Exceptions

Concurrency /Parallelism

Modern Languages

Useful

Useless

C
G
0 python
PHP ruby
Java

Haskell

Any Effects Controlled Effects

Purity /Controlled effects matter!

Kernel

» Privileges

Security applications

» Side-channel resistant applications

Big Data

» Computing in parallel

Effects as Types

My result is of type T:
Exception(I0(T))

Effects as Types

Computing the result involves input/output side effects...
10(T)

. which come with exceptions I want to catch:
Exception(I0(T))

Effects as Types

Type of getCurrentTime:
I0(Time)

Effects as Types

Type of getCurrentTime:
I0(Time)

We can only evaluate time through side effects!

Effects as Types

Type of sum:
[(Num] -> Num

Effects as Types

Type of sum:
[Num] -> Num

We can evaluate the result without side effects!

Effects as Types

Type of (+):

Num -> Num -> Num

Effects as Types

Type of (1 + 1):

Num

Effects as Types

Implementation

Extensible effects

» Monad transformers

Arrow transformers

Kan extensions

With Haskell type classes...

.. we get monads for free!

Type classes

Eq for Equality

class Eq a where
(==) :: a — a —> Bool

Type classes

Booleans can be equal, for instance:

instance Eq Bool where
True — True = True
False = False = True
— _ = False

Monads from category theory

Two operations we want:

unit T = M(T)
join M(M(T)) = M(T)

Monads in Haskell

class Monad m where
return :: a —> m a
(>>=) ::ma-—> (a—>mb) >mb

The Maybe Monad

data Maybe a = Just a | Nothing

instance Monad Maybe where
return x = Just x
Nothing >>= f = Nothing
Just x >=f = f x

The Identity Monad

data Identity a = Identity a

instance Monad Identity where
return x = Identity x
m>>= _ =m

unit and join in Haskell monads

unit is return
return T = M(T)

unit and join in Haskell monads

id x = x

join :: m (ma) —>m a
join m = m >>= id

Something crazy

data Maybe a = Just a | Nothing

newtype MaybeT m a =
MaybeT { runMaybeT :: m (Maybe a) }

Something crazy

data Maybe a = Just a | Nothing

newtype MaybeT m a =
MaybeT { runMaybeT :: m (Maybe a) }

instance Monad (MaybeT Identity) where
return x = MaybeT (Identity x)
m >>= f = MaybeT (runMaybeT m >>= maybe’)
where maybe’ (Just x) = runMaybeT (f x)
maybe’ Nothing = Identity Nothing

Monad transformers

returning Nothing is break!

instance Monad (MaybeT Identity) where
return x = MaybeT (Identity x)
m >>= f = MaybeT (runMaybeT m >>= maybe’)
where maybe’ (Just x) = runMaybeT (f x)
maybe’ Nothing = Identity Nothing

Monad transformers

instance Monad (MaybeT Identity) where
return x = MaybeT (Identity x)
m >>= f = MaybeT (runMaybeT m >>= maybe’)
where maybe’ (Just x) = runMaybeT (f x)
maybe’ Nothing = Identity Nothing

put MaybeT on any monad transformer stack!

instance Monad m => Monad (MaybeT m) where
return x = MaybeT (return x)
m >>= f = MaybeT (runMaybeT m >>= maybe’)
where maybe’ (Just x) = runMaybeT (f x)
maybe’ Nothing = return Nothing

Monad transformers

break any monadic computation!

instance Monad m => Monad (MaybeT m) where
return x = MaybeT (return x)
m >>= f = MaybeT (runMaybeT m >>= maybe’)
where maybe’ (Just x) = runMaybeT (f x)
maybe’ Nothing = return Nothing
fail _ = MaybeT (return Nothing)

Idiomatic use

main :: IO ()

main = do
runMaybeT verify
putStrLn ”Bye!”

verify :: MaybeT 10 ()
verify = forever $ do
line <— lift getLine
when (line = ”richard”) (fail 77)

Idiomatic use

f = f = do
ml >= \a — a <— ml
m2 >>= \b —> b <— m2
m3 >>= \c¢ —> c <— m3
return (a, b, c) return (a, b, c¢)

f = 1iftM3 (,,) ml m2 m3

f=1(,,) <$> ml <> m2 <+x> m3

How to lift

class MonadTrans t where
lift :: Monad m=>m a —> t m a

How to lift

class MonadTrans t where
lift :: Monad m=>m a —> t m a

instance MonadTrans MaybeT where
lift m = MaybeT (liftM Just m)
where liftM f m = m >>= return (f m)

How to lift

lift2 m = lift (lift m)

How to lift

lift2

(MonadTrans t

, MonadTrans u

, Monad (t m)

, Monad m

) =>ma —>u (tm a
lift2 m = lift (lift m)

Futures

Future(T)

Futures

"The eventual result of an asynchronous operation.”
Future(T)

Futures

type Future a = MaybeT STM a

Futures

runFuture :: Future a — IO (Maybe a)
runFuture f = atomically (runMaybeT f)

Futures

input :: TMVar Int —> Future Event

input transactional = do
status <— lift (takeTMVar transactional)
when (status < 0) (fail ”7)
return (eventFromStatus status)

Futures

eventFromStatus :: Int —> Event

Futures

main :: I0 ()

main = do
transactional <— newTMVar 0
forkIO (inputDevice0 transactional)
forkIO (inputDevicel transactional)

loop

loop :: I0 ()

loop transactional = do
event <— runFuture (input transactional)
unless (isNothing event) (loop transactional)

Promises

type Reason = String
type Promise a = EitherT Reason SIM a

Promises

data Either a b = Left a | Right b

runPromise :: Promise a —> IO (Either Reason a)
runPromise p = atomically (runEitherT p)

Promises

loop :: 10 ()
loop transactional = do
event <— runFuture (event transactional)
case event of
Left reason —> putStrLn reason
Right _ —> loop transactional

Promises as Functors

liftPromise (a = b) —> Promise a —> Promise b

liftPromise f p = p >>= apply
where apply x = return (f x)

Monads are Functors

liftM :: Monad m=> (a —> b) —>ma —>m b
lift M f m = m >>= apply
where apply x = return (f x)

Functors in Haskell

class Functor a where
fmap :: (a —>b) —> f a—> f b

Functors in Haskell

class Functor a where
fmap :: (a —>b) —> f a —> f b

instance Functor Promise where
fmap = liftM

Functors in Haskell

promise :: Promise [Int]

sum :: [Int] — Int

Functors in Haskell

promise

sum

[Int] — Int

lift M sum promise
fmap sum promise
sum <$> promise

sum .

promise

Promise [Int]

Promise
Promise
Promise
Promise

Int
Int
Int
Int

Monads as specialized functors

(F, unit, join)

Purity /Controlled effects matter!

Kernel

» Privileges

Security applications

» Side-channel resistant applications

Big Data

» Computing in parallel

All applications have effects, take control!

Sources

» http://github.com/promises-aplus
» http://okmij.org/ftp/Haskell /extensible
http://hackage.haskell.org/package/transformers

v

v

http://www.haskell.org/arrows

v

http://hackage.haskell.org/package /kan-extensions

http://www.haskell.org/haskellwiki/Monad_tutorials_timeline

