#include #include #include "display.h" // VFDDB0 PB0 // VFDDB1 PB1 // VFDDB2 PB2 // VFDDB3 PB3 // VFDDB4 PB4 // VFDDB5 PB5 // VFDDB6 PB6 // VFDDB7 PB7 // VFDRS PC5 // VFDRW PC6 // VFDE PC7 // VFDRST (PC4) // maximum wait time until busy should be deasserted // bail out if it takes longer than that // unit: 10us (roughly) // range: 0..255 #define DISPLAY_WAIT_MAX_10US 100 void display_init() { // PC5, PC6, PC7: output (VFD RS, RW, E), RS=0, RW=1, E=1 // PC4: output, active low (VFD RESET), unused in display v2 // PB0..7: output (VFD DB) - can be switched to input (pullup not needed) PORTB = 0x00; DDRB = 0xff; PORTC |= _BV(PC6) | _BV(PC7); DDRC |= _BV(PC5) | _BV(PC6) | _BV(PC7); display_wait_ready(); _delay_ms(100); // initialize display: 8 bit, 2 lines, 50% brightness display_write_ir(0x3c); display_wait_ready(); } static void display_set_rs(bool on) { if (on) { PORTC |= _BV(PC5); } else { PORTC &= ~_BV(PC5); } } static void display_set_rw(bool on) { if (on) { PORTC |= _BV(PC6); } else { PORTC &= ~_BV(PC6); } } static void display_set_e(bool on) { if (on) { PORTC |= _BV(PC7); } else { PORTC &= ~_BV(PC7); } } static void display_set_reset(bool on) { if (on) { PORTC |= _BV(PC4); } else { PORTC &= ~_BV(PC4); } } static void display_set_data(uint8_t data) { PORTB = data; } static uint8_t display_get_data() { uint8_t data = PINB; return data; } uint8_t display_read_ir() { // switch PD to input DDRB = 0x00; // E=0 (enable/clock) RS=0 (IR) RW=1 (read) PORTC = (PORTC & ~(_BV(PC5) | _BV(PC7))) | _BV(PC6); _delay_us(0.23); // E=1 (enable/clock) PORTC |= _BV(PC7); _delay_us(0.16); // read inputs uint8_t data = PINB; _delay_us(0.23 - 0.16); // E=0 (enable/clock) PORTC &= ~_BV(PC7); _delay_us(0.01); // reset to idle / output PORTC = _BV(PC6) | _BV(PC7); DDRB = 0xff; return data; } uint8_t display_read_dr() { // switch PD to input DDRB = 0x00; // E=0 (enable/clock) RS=1 (IR) RW=1 (read) PORTC = (PORTC & ~_BV(PC7)) | (_BV(PC5) | _BV(PC6)); _delay_us(0.23); // E=1 (enable/clock) PORTC |= _BV(PC7); _delay_us(0.16); // read inputs uint8_t data = PINB; _delay_us(0.23 - 0.16); // E=0 (enable/clock) PORTC &= ~_BV(PC7); _delay_us(0.01); // reset to idle / output PORTC = _BV(PC6) | _BV(PC7); DDRB = 0xff; return data; } void display_write_ir(uint8_t data) { // RS=0 (IR) RW=0 (write) display_set_rs(false); display_set_rw(false); _delay_us(0.23); // E=1 (enable/clock) display_set_e(true); // send data display_set_data(data); _delay_us(0.23); // E=0 (enable/clock) display_set_e(false); _delay_us(0.01); // reset to idle display_set_rs(true); display_set_rw(true); display_set_data(0); } void display_write_dr(uint8_t data) { // RS=1 (DR) RW=0 (write) display_set_rs(true); display_set_rw(false); _delay_us(0.23); // E=1 (enable/clock) display_set_e(true); // send data display_set_data(data); _delay_us(0.23); // E=0 (enable/clock) display_set_e(false); _delay_us(0.01); // reset to idle display_set_rw(true); display_set_data(0); } bool display_wait_ready() { // FIXME hack to avoid read mode _delay_ms(1); return true; // FIXME // if the busy flag never goes high, we'll run into a deadlock here. // let's put a deadline on the wait loop. for (uint8_t i = 0; i < DISPLAY_WAIT_MAX_10US; i++) { // read_ir() takes about 500ns if (display_read_ir() & _BV(7)) return true; // wait 10us until the next status read _delay_us(10 - 0.5); } return false; } void display_write(uint8_t command, const uint8_t *data, uint8_t length) { if (display_wait_ready()) { display_write_ir(command); for (uint8_t i = 0; i < length; i++) { display_write_dr(data[i]); } } }